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Introduction: Security Proof by Reduction

To prove security of a scheme %, relate it to some hard problem T[1
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This paper: Lower bounds on security loss against adaptive adversaries



Our Results

This paper: Lower bounds on security loss against adaptive adversaries

Consider certain multi-round games that capture several existing
constructions where the adversary queries edges of a graph:

e Generalized selective decryption (GSD):
nodes = keys, edges = encryptions
o TreeKEM construction of continuous group key agreement:

nodes = keys, sources = users, sinks = group keys, edges =
encryptions

o GGM84 construction of a prefix-constrained PRFs:
nodes = seeds, edges = PRG evaluations
e Proxy re-encryption (PRE):

nodes = keys, edges = re-encryption keys



Our Results

Application | Underlying Graph | Lower Bound Reduction Upper Bound
Path Py NSlog(M) Oblivious NOUoe(N)) [FJP15]
GSD Binary In-Tree By NS og(N) Oblivious NO(og(N) [Pan07]
Tree NS og(N) Straight-line NO(e(M) [FJP15]
Arbitrary DAG 22(VN) Oblivious NOWN/og(N)) [JKK+-17]
TreeKEM Tree MSUlog(log(M)) | Straight-line || QOUe(M) [KPW+21]
GGM CPRF Tree nflog(n)) Straight-line O(log(n)) [FKPR14]
Path Py NS og(N) Oblivious NOUoe(N)) [FKKP19]
PRE Binary In-Tree By |  N%(oe(V) Oblivious NOUoe(N) [FKKP19]
Arbitrary DAG 29(N) Arbitrary || NOWN/1og(N)) [FKKP19]
N = 2" .. .size of the graph.

GGM CPRF: n ..

.input length. TreeKEM: M ..

.number of users, Q ..

.number of queries.

Reductions: oblivious C straight-line C arbitrary fully black-box




Our Results

Main conceptual idea:

@ Introduce Builder-Pebbler Game:
a two-player, multi-stage game

@ Pebbler’s success probability —
use oracle separation techniques
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Generalized Selective Decryption (GSD) [Pan07]

14
, encryption graph

(2)

Goal: Reduction proving adaptive GSD security
based on IND-CPA security of the SKE

Intuition: Reduction needs to embed IND-CPA challenge at an edge,

but can answer other uncorrupted edges real or fake

Rule: Cannot create encryptions of the IND-CPA challenge key

= all edges incident on the challenge source must be fake!

Eth4 (k3)




Threshold Adversaries

Our (inefficient) adversary:

@ Corrupts all nodes outside the challenge graph, outputs 1 if any fake
edges outgoing from corrupt nodes
= challenge key must be embedded in challenge graph

@ On the challenge graph: Interprets fake edges as pebbled
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e Outputs 0/1 if final pebbling configuration good/bad



Threshold Adversaries

The threshold:
o Consider reversible edge pebbling:

Can place/remove a pebble on an edge iff all edges incident on its source are
pebbled.

@ Define by a cut in the configuration graph:




Threshold Adversaries

The threshold:
o Consider reversible edge pebbling:

Can place/remove a pebble on an edge iff all edges incident on its source are
pebbled.

@ Define by a cut in the configuration graph:

Cut set ... configurations at the border between good and bad
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Builder-Pebbler Game
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Cut set X
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Builder-Pebbler Game
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Builder-Pebbler Game
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Builder Strategy for Trees




Cut for Trees with Large Outdegree

@ Challenge graph = path of length n
@ Lower bound for reversible edge pebbling on a path:
Require log(n) + 1 pebbles to pebble last edge

@ Define cut X: pebble configuration P on the challenge path is
iff it is

= Goal of the Pebbler: Place log(n) pebbles on the challenge path, but
no pebbles outgoing from nodes outside the path.
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Builder Strategy for Trees
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Builder Strategy for Trees
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Lower Bound for GSD

Combinatorial upper bound — cryptographic lower bound:
@ Construct ideal SKE scheme

e Construct (inefficient) threshold adversary for GSD that simulates the
above Builder strategy B, such that:

v R: 3 Pebbler P against B such that:

R has security loss <A = P has advantage > 1/A

Theorem (GSD on trees, informal)

Any straight-line reduction proving security of unrestricted adaptive
GSD based on the IND-CPA security of the underlying SKE scheme loses
at least a super-polynomial factor (N(°e(N)) ) jn the number of users N.




Our Results

Application | Underlying Graph | Lower Bound Reduction Upper Bound
Path Py NSlog(N) Oblivious NOUoe(N)) [FJP15]
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N = 2" ...size of the graph.
GGM CPRF: n ...input length. TreeKEM: M ...number of users, Q ...number of queries.






TreeKEM: Update

Alice updates:
@ choose fresh keys (via hash chain, as in TreeKEM)

@ remove old keys



Lower Bound for TreeKEM

@ Game is quite similar to public-key GSD

@ Construct adversary that embeds tree structure as above
(depth log(M), M group size)

Cruicial: Relay server is not trusted!

Theorem (TreeKEM, informal)

Any straight-line reduction proving adaptive CGKA security for
TreeKEM based on the IND-CPA security of the underlying PKE scheme
loses a super-polynomial factor (M(logloe(M))) in the group size M.
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Prefix-constrained PRF: GGM84

5 R
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FGGM(k,X) = kx where k@ =k and Vz € {0, 1}* : szOszHl = PRG(/{Z)

Adversary can query constrained keys and evaluations.



Lower Bound for GGM84

Theorem (GGM CPREF, informal)

Any straight-line reduction proving adaptive security for the GGM
CPRF based on the security of the underlying PRG loses a
super-polynomial factor (n2(°&(") ) in the input size n.




Our Results

Application | Underlying Graph | Lower Bound Reduction Upper Bound
Path Py NSog(N) Oblivious NOUlee(M) [FJP15]
en Binary In-Tree By |  N@(oa(NV)) Oblivious NOUoe(N)) [Pan07]
Tree NUloe(M) | Straight-line NOUoe(N)) [FJP15]
Arbitrary DAG 22(VN) Oblivious || NOW/10&(N) [ JKK+17]
TreeKEM Tree MSlog(1o&(M)) | Straight-line || QO('°g<M>) [KPW-21]
GGM CPRF Tree nSlog(n) Straight-line O(log(m) [FKPR14]
Path Py NSog(N) Oblivious NO log(N)) [FKKP19]
PRE Binary In-Tree By |  N(o&(V)) Oblivious NOUo&(N)) [FKKP19]
Arbitrary DAG 29(N) Arbitrary || NON/leg(N)) [FKKP19]
N = 2" . ..size of the graph.

GGM CPRF: n ...input length. TreeKEM: M ... number of users, Q ...number of queries.

For the other results, see https://eprint.iacr.org/2021/059!


https://eprint.iacr.org/2021/059
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Conclusion and Open Problems

Initiated study of lower bounds on loss in adaptive security for certain
multi-round games on graphs.

@ Can we strengthen our lower bounds to hold also for
reductions? Or can we use these techniques to
overcome our lower bounds?

PRE on complete DAGs: LB for arbitrary black-box reductions.
@ What are other multi-round games captured by the Builder-Pebbler
Game?

@ Can we use pebbling lower bounds to prove lower bounds on the loss
in adaptive security in other settings, i.e. constant-round games (eg.
ABE, Garbling)?

Yao's garbling: Yes [KKPW?21], but very different techniques required

THANK YOU FOR YOUR ATTENTION!
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